organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

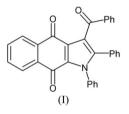
Yun Liu, Zhi-Feng Lu, Miao Ye, Yan Zhang and Jian-Hua Xu*

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: lvzhifeng@nju.org.cn

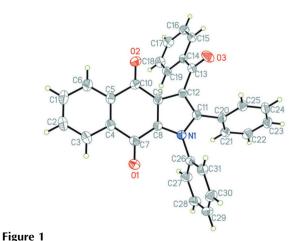
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.050 wR factor = 0.151 Data-to-parameter ratio = 12.6


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Benzoyl-1,2-diphenyl-1*H*-benz[*f*]indole-4,9-dione

In the title compound, $C_{31}H_{19}NO_3$, the benz[*f*]indole-4,9dione unit is essentially planar. The crystal structure exhibits intermolecular C-H···O contacts. Received 15 March 2007 Accepted 22 March 2007


Comment

Naturally occurring quinones constitute an important class of natural products that have a wide range of biological activities (Bolton *et al.*, 2000). A basic structural unit in these quinone natural products is the indolequinone group. The synthesis of benzannulated indolequinones, benz[f]indole-4,9-diones, attracts much current attention (Hu *et al.*, 2006). In our ongoing research work on the direct one-pot syntheses of benz[f]indole-4,9-diones, we have prepared the title compound, (I), by a *C*,*N*-dialkylation reaction between 2,3-dichloro-1,4-naphthoquinone and 1,3-diphenyl-3-(phenylamino)-2-propen-1-one.

In the molecule of (I) (Fig. 1), the benz[f]indole-4,9-dione unit is essentially planar, with the benzene (C1–C6) and pyrrole rings forming dihedral angles of 4.2 (3) and 2.7 (3)°, respectively, with the mean plane through the benzoquinone unit.

The crystal structure of (I) exhibits intermolecular C– $H \cdots O$ contacts (Table 1).

© 2007 International Union of Crystallography All rights reserved The molecular structure of (I), showing displacement ellipsoids at the 30% probability level.

Experimental

A mixture of 2,3-dichloro-1,4-naphthoquinone (0.250 g, 1.1 mmol), 1,3-diphenyl-3-(phenylamino)-2-propen-1-one (0.299 g, 1 mmol) and Na_2CO_3 (0.345 g, 2.5 mmol) in dimethylformamide (15 ml) was stirred at 353 K for 6 h. After evaporation of the solvent, compound (I) was isolated using silica-gel column chromatography with petro-leum ether–ethyl acetate (4:1) as eluents (yield 40%). Single crystals of (I) were obtained by slow evaporation of a petroleum ether–ethyl acetate (3:1 ν/ν) solution of (I).

Crystal data

 $\begin{array}{l} C_{31}H_{19}NO_{3}\\ M_{r}=453.47\\ \text{Triclinic, }P\overline{1}\\ a=10.481~(2)~\text{\AA}\\ b=10.916~(2)~\text{\AA}\\ c=11.948~(3)~\text{\AA}\\ \alpha=63.29~(2)^{\circ}\\ \beta=68.99~(3)^{\circ} \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer Absorption correction: ψ scan (*XCAD4*; Harms & Wocadlo, 1995) $T_{min} = 0.966, T_{max} = 0.973$ 4212 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.151$ S = 1.003969 reflections $\gamma = 73.49 (3)^{\circ}$ $V = 1127.5 (5) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K $0.40 \times 0.31 \times 0.22 \text{ mm}$

3969 independent reflections 2890 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ 3 standard reflections every 200 reflections intensity decay: none

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C17-H17···O1 ⁱ	0.93	2.57	3.340 (4)	140
$C31-H31\cdots O2^{ii}$	0.93	2.57	3.475 (4)	166

H atoms were placed in calculated positions and allowed to ride during refinement, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

This work was supported by the National Natural Science Foundation of China (grant No. 20572044). Partial support by the Modern Analytical Centre at Nanjing University is also gratefully acknowledged.

References

Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G. & Monks, T. J. (2000). *Chem. Res. Toxicol.* **13**, 135–160.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Enraf-Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). *XCAD4*. University of Marburg, Germany. Hu, H.-Y., Liu, Y., Ye, M. & Xu, J.-H. (2006). *Synlett*, pp. 1913–1917. Spek, A. L. (2003). *J. Appl. Cryst.* **36**, 7–13.